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Chemical and enzymatic synthesis of buprestin A
and B—bitter acylglucosides from Australian jewel beetles

(Coleoptera: Buprestidae)
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Abstract—A chemical and enzymatic synthesis was developed for buprestin A and B originally isolated from Australian jewel beetles
(Coleoptera: Buprestidae). The common motif of both acylglucosides is a b-DD-glucopyranose-1,2-bis(pyrrole-2-carboxylate). Start-
ing from 1,3,4,6-tetra-O-acetyl-a-DD-glucose, the first pyrrole-2-carboxylate was introduced by DCC–DMAP mediated esterification.
After conversion to a trichloroacetimidate the anomeric pyrrole-2-carboxylate was installed. Selective removal of the acetates was
accomplished using immobilized Candida antarctica lipase. The resulting triol was converted to Buprestin A or B via a Mitsunobu
reaction.
� 2006 Elsevier Ltd. All rights reserved.
Two publications describe the isolation and structural
characterization of two acylglucosides containing
multiple pyrrole-2-carboxylic acid residues in Australian
jewel beetles (Buprestidae).1 The compounds named
buprestin A and B (Fig. 1) were purified and structurally
characterized by NMR. The compounds were found to
act as deterrents for ants, suggesting a biological role
of the buprestins.2 To further investigate the biological
properties of the buprestins and related compounds,
we developed a synthetic approach based on chemical
and enzymatic methods. This approach should provide
sufficient amounts of the reference compounds for struc-
ture confirmation and biological assays. Since both
buprestins differ only in the residue attached to O-6,
the use of a common intermediate was desirable. We
herein describe the synthesis of buprestin A and B from
a common precursor.

Retrosynthetic analysis (Fig. 1) suggested the introduc-
tion of the variable acyl residue at O-6 in the last step.
This would also allow the attachment of alternative res-
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idues at O-6, which may be present in minor buprestins.
The desired precursor (triol 6) contains a pyrrole-2-car-
boxylic acid moiety at O-2 and at the anomeric center.
In order to exploit the anticipated neighboring group
activity of the 2-O-pyrrole-2-carboxylic acid group, this
residue should be installed first, thus leading to the glu-
cose-tetraacetate 1,3 which is available in a one-pot reac-
tion starting from glucose. It was first examined how to
esterify pyrrole-2-carboxylic acid with OH-2 of com-
pound 1. Initial attempts to generate the ester at O-2
using pyrrole-2-trichloromethylketone4 and compound
1 activated with DBU or NaH gave low yields due to
the instability of 1. A suitable method was found using
dicyclohexylcarbodiimide (DCC) and N,N-dimethyl-
aminopyridine (DMAP) giving the desired ester 2 in
93% yield. To avoid the separation of anomers resulting
from the acylation of anomeric hydroxyl groups,5 the b-
selective introduction of the anomeric pyrrole-2-carbox-
ylic acid was investigated using the trichloroacetimidate6

method. As a model compound 2,3,4,6-tetra-O-acetyl-a-
DD-glucosyltrichloroacetimidate6 was reacted with pyr-
role-2-carboxylic acid in methylene chloride. Glycosyl-
trichloroacetimidates react with benzoic acid without
activation,7 whereas pyrrole-2-carboxylic acid was only
incorporated when BF3–Et2O was added as an activator
to give the desired 1-O-pyrrole-2-carboxylated b-gluco-
side in 72% yield (data not shown). According to this
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Figure 1. Retrosynthetic analysis of buprestin A and B leading to the common precursor 6.
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approach, compound 2 was first converted to hemiacetal
3 by removal of the anomeric acetate with hydrazine
acetate8 (73%) followed by the addition of trichloro-
acetonitrile in the presence of 1,8-diazabicyclo[5.4.0]
undec-7-ene (DBU) (81%). When reacting imidate 4
with pyrrole-2-carboxylic acid in the presence of BF3–
Et2O, acylglucoside 5 was obtained in 89% yield
(Fig. 2). The pyrrole-2-carboxylate moiety at O-2 gave
only the b-product resulting from neighboring group
participation. With compound 5 in hands, removal of
the three acetates to the envisioned universal precursor
6 was investigated. It was found by TLC analysis that
the reaction of 5 with solid K2CO3 in CH2Cl2/MeOH
(2:1) led to numerous deacylation products. After 30%
conversion, the desired compound 6 was present in
approximately 15%. Prolonged reaction time gave rise
to hemiacetals and glucose. When attempting the
deacetylation using catalytic NaOMe in MeOH, the
yield of 6 could be increased to 30–40% (TLC). The
yields remained unsatisfactory due to a comparable
reactivity of the acetates and the anomeric acyl group.
Thus, a selective deprotection9 under neutral conditions
was investigated using hydrolytic enzymes. A panel of
twelve commercially available lipases was tested with 5
as a substrate. Using LC-MS analysis, only the lipase
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Figure 2. (a) Pyrrole-2-carboxylic acid, DCC, DMAP, CH2Cl2, (93%); (b) hy
(d) pyrrole-2-carboxylic acid, BF3–OEt2, molecular sieves 4 Å, CH2Cl2, 0 �C
0.5 M NH4OAc/CH3CN (9:1), 40 �C, (6: 86%), (7: 8%).
from Candida antarctica (CAL B; Novozym 435)
showed sufficient activity.10 With this enzyme, the condi-
tions of deacetylation were improved stepwise yielding
the desired triol 6 in an optimized yield of 86% after
flash chromatography. A side product resulting from
acyl group migration11 onto O-3 was identified as com-
pound 7 (8% yield).

Compound 6 was used to install the third acyl group at
O-6. Initial attempts to selectively obtain an O-6 acyl-
ated product by reacting activated pyrrole-2-carboxylic
acid (DCC–DMAP) gave only low yields (19%) along
with an O-4-regioisomer and products carrying multiple
acylations. Selective introduction at O-6 was success-
fully accomplished using the Mitsunobu reaction12 (tri-
phenylphosphine, diethylazodicarboxylate (DEAD))
giving buprestin A (A) in 72% yield. The 1H and 13C
NMR data of the synthetic material13 are in accordance
with the published data, thus confirming the structure of
buprestin A proposed by Moore and co-workers.1

The Mitsunobu reaction was also applied to introduce
p-hydroxybenzoic acid directly, however, the yield was
only 22%. Thus, p-acetoxybenzoic acid was used giving
the O-acetylated buprestin B derivative 8 (75%)
OO
AcO

O

AcO

ON
H

OH

OAcO
AcO

O

AcO

ON
H

O CCl3

NH

O

O

O

O

HN

O

3 4

c

6

OHO
O

OH

HO

O

O

HN

O

HN 7

drazine acetate, DMF (73%); (c) Cl3CCN, DBU, CH2Cl2, 0 �C (81%);
(89%); (e) Candidia antarctica lipase B, immobilized (Novozym 435),



OHO
HO

O

O

O

O

HN

ON
H

O

N
H

B

A 8

d

R = Ac

R = H

6
a or b c

e

OHO
HO

O

O

O

O

HN

ON
H

O
RO

Figure 3. (a) Pyrrole-2-carboxylic acid, DCC, DMAP, THF, (19%); (b) pyrrole-2-carboxylic acid, PPh3, DEAD, THF, (72%); (c) p-hydroxybenzoic
acid, PPh3, DEAD, THF, (22%); (d) p-acetoxybenzoic acid, PPh3, DEAD, THF, (75%); (e) Candidia antarctica lipase B, immobilized (Novozym
435), 0.5 M NH4OAc/CH3CN (9:1), 40 �C, (90%).
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(Fig. 3). Deprotection10 of the phenolic acetate was
achieved with immobilized CAL B leading to the desired
buprestin B (B) in 90% yield after 30 min of reaction
time. The NMR data13 of the synthetic buprestin B
are in accordance with the data published for the iso-
lated compound.

In summary, a short synthesis was developed for bupr-
estin A (six steps, 30% total yield) and for buprestin B
(seven steps, 28% total yield). The analytical data for
both compounds proved identical with the isolated
material, thus confirming the structural assignment.
With several hundred milligrams of the synthetic com-
pounds in hand, biological assays will be conducted to
further investigate the role of buprestins as chemical
defense molecules in detail.
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